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DNN ASSESSMENT
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Problem: What is the performance of a 
DNN for inputs beyond its original dataset?
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AUTOMATED TEST INPUT GENERATION FOR DNNS
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invalid inputs, not 
recognisable by domain 
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AUTOMATED TEST INPUT GENERATION FOR DNNS
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AUTOMATED TEST INPUT GENERATION FOR DNNS



GENERATIVE AI MODELS

Variational AutoEncoder (VAE) Generative Adversarial Network (GAN) Diffusion Model (DM)
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Condition

RANDOM WALK IN THE LATENT SPACE



GENETIC ALGORITHM
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Seed 
Generation

Population

VAE: Image 
fed to the 
Encoder

GAN: Sample 
from target 
distribution + 
target label

DM: Sample 
from target 
distribution + 
prompt



GENETIC ALGORITHM
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Seed 
Generation

Population

Crossover and 
Mutation in the 

Latent Space

Mutation: 
Random Latent 
Walk

Crossover: One-
Point Crossover 
of Latent Vectors

Constraint: 
Clamping Vectors 
to Target 
Distribution



GENETIC ALGORITHM
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Fitness: 
Misclassification 

Likelihood

Evaluation of 
generated 
images on the 
DNN under test 

Compares 
confidence 
assigned to the 
target class VS 
other classes 



GENETIC ALGORITHM
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EVALUATION BENCHMARK

11

Effectiveness:  
# Valid label-
preserving 
misclassification
-inducing inputs

Efficiency: 
# Iterations

Generative 
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Genetic 
Algorithm

DNN 
Under Test

Fixed search budget

Small VS large perturbation step

Imagenet

CIFAR-10

SVHN

MNIST

Co
m

pl
ex

ity

DATASETS

SETUP

METRICS



SEED GENERATION
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VAE performance declined as dataset complexity increased  

GAN and DMs consistently achieved high accuracy in seed generation, regardless of 
complexity
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# ITERATIONS TO TRIGGER A FAILURE
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VAEs need less iterations than other GenAI models for complex datasets, while DMs are the most 
efficient for simpler datasets 

Increased perturbations reduce the number of iterations 
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VALIDITY AND LABEL PRESERVATION
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DMs excel at generating valid misclassification-inducing inputs for complex datasets like CIFAR-10 
and ImageNet 
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KEY INSIGHTS

15

‣ Diffusion Models excel in complex 
tasks, but their superior performance 
comes at a higher cost

‣ Larger perturbation extents speed up 
test generation without compromising 
input validity or label preservation

‣ Latent vectors should be carefully 
constrained and carefully 
manipulated

INFERENCE TIME 10X 
HIGHER FOR DM VS VAE

DMS UP TO 10X MORE 
EFFICIENT FOR 

IMAGENET AND SVHN

AT MOST ONLY 15% 
MISCLASSIFICATIONS FOR 

SVHN ARE VALID AND 
PRESERVE THE LABEL
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Ayça Kolukısa Tarhan

SUMMARY

Icons from www.flaticon.com

http://www.flaticon.com
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EXTRA SLIDES
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