

BENCHMARKING GENERATIVE AI MODELS FOR DEEP LEARNING TEST INPUT GENERATION

ANDREA STOCCO

VINCENZO RICCIO

DNN ASSESSMENT

Problem: What is the performance of a DNN for inputs beyond its original dataset?

ACC = 0.95

DNN UNDER TEST

PERFORMANCE METRIC

AUTOMATED TEST INPUT GENERATION FOR DNNS

TEST GENERATOR

Target Label

9

Predicted Label

AUTOMATED TEST INPUT GENERATION FOR DNNS

TEST GENERATOR

Predicted Label

Problem #1:

invalid inputs, not recognisable by domain experts in the input domain

AUTOMATED TEST INPUT GENERATION FOR DNNS

TEST GENERATOR

Predicted Label

Problem #1:

invalid inputs, not recognisable by domain experts in the input domain

Problem #2:

original label is not preserved

Variational AutoEncoder (VAE)

RANDOM WALK IN THE LATENT SPACE

Generative Adversarial Network (GAN)

Diffusion Model (DM)

VAE: Image fed to the Encoder

GAN: Sample from target distribution + target label

 \land

Ē

DM: Sample from target distribution + prompt

Crossover and Mutation in the Latent Space

Mutation: Random Latent Walk

Crossover: One-**Point Crossover** of Latent Vectors

Constraint: Clamping Vectors to Target Distribution

Crossover and Mutation in the Latent Space

Evaluation of generated images on the **DNN** under test

Compares confidence assigned to the target class VS other classes

Crossover and Mutation in the Latent Space

Termination Conditions

Search budget exhausted

EVALUATION BENCHMARK

DATASETS

Imagenet

CIFAR-10

Fixed search budget

METRICS

Effectiveness: # Valid labelpreserving misclassification -inducing inputs

Efficiency: # Iterations

DNN

Under Test

Genetic Algorithm

SETUP

GENFRA

VAE performance declined as dataset complexity increased

GAN and DMs consistently achieved high accuracy in seed generation, regardless of complexity

FERATIONS TO TRIGGER A FAIL

VAEs need less iterations than other GenAI models for complex datasets, while DMs are the most efficient for simpler datasets

Increased perturbations reduce the number of iterations

VALIDITY AND LABEL PRESERVAT

DMs excel at generating valid misclassification-inducing inputs for complex datasets like CIFAR-10 and ImageNet

KEY INSIGHTS

Diffusion Models excel in complex tasks, but their superior performance comes at a higher cost

Larger perturbation extents speed up test generation without compromising input validity or label preservation

Latent vectors should be carefully constrained and carefully manipulated

•

HIGHER FOR DM VS VAE

DMS UP TO 10X MORE

INFERENCE TIME 10X

EFFICIENT FOR IMAGENET AND SVHN AT MOST ONLY 15%

MISCLASSIFICATIONS FOR SVHN ARE VALID AND **PRESERVE THE LABEL**

SUMMARY

Icons from <u>www.flaticon.com</u>

TABLE II CHARACTERISTICS OF THE GENAI MODELS: LATENT VECTOR SIZE, TRAINING TIME UNTIL CONVERGENCE, AVERAGE INFERENCE TIME.

Dataset	Model	LV size	t_{train} (min)	t_{infer} (ms)
	VAE [49]	400	6	0.27
MNIST	GAN [50], [51]	100	9	0.7
	DM [52]	16384	405	960.68
SVHN	VAE [53]	800	93	4.07
	GAN [50], [51]	100	86	1.75
	DM [52]	16384	572	1213.49
CIFAR-10	VAE [53]	1024	423	2.51
	GAN [50], [51]	100	450	1.73
	DM [52]	16384	362	1903.29
ImageNet	VAE [54]	512	2521	11.92
	GAN [55]	128	21600	20.68
	DM [52]	16384	30	1945.77

Dataset	Pert. Step (δ_{init})	Model	% Seeds	% Misclass. (#)	# Iterations	% Validity (#)	% Preserved (#)
MNIST	Low	VAE	99	4.04 (4)	245.41	50.00 (2)	100.00 (2)
		GAN	99	8.08 (8)	242.05	75.00 (6)	83.33 (5)
		DM	87	50.57 (44)	164.61	45.45 (20)	30.00 (6)
		VAE	99	100.00 (99)	62.92	73.74 (73)	<u>49.32</u> (36)
	High	GAN	99	96.97 (96)	107.46	<u>69.79</u> (67)	62.69 (42)
		DM	87	100.00 (87)	26.77	40.23 (35)	34.29 (12)
SVHN		VAE	66	50.00 (33)	178.20	51.52 (17)	41.18 (7)
	Low	GAN	84	42.86 (36)	182.22	30.56 (11)	<u>45.45</u> (5)
		DM	95	69.47 (66)	131.04	39.39 (26)	57.69 (15)
	High	VAE	66	100.00 (66)	27.00	39.39 (26)	30.77 (8)
		GAN	84	<u>98.81</u> (83)	39.00	<u>36.14</u> (30)	50.00 (15)
		DM	95	100.00 (95)	13.23	23.16 (22)	18.18 (4)
CIFAR-10	Low	VAE	39	<u>82.05</u> (32)	118.90	<u>53.13</u> (17)	29.41 (5)
		GAN	69	66.67 (46)	140.32	45.65 (21)	19.05 (4)
		DM	87	89.66 (78)	85.63	60.26 (47)	61.70 (29)
	High	VAE	39	100.00 (39)	<u>19.51</u>	30.77 (12)	33.33 (4)
		GAN	69	100.00 (69)	<u>25.78</u>	31.88 (22)	22.73 (5)
		DM	87	100.00 (87)	14.18	62.07 (54)	68.52 (37)
ImageNet (Teddy Bear)		VAE	14	100.00 (14)	13.57	78.57 (11)	81.82 (9)
	Low	GAN	<u>85</u>	100.00 (85)	98.27	74.12 (63)	36.51 (23)
		DM	87	<u>98.85</u> (86)	48.45	91.86 (79)	49.37 (39)
	High	VAE	14	100.00 (14)	1.36	100.00 (14)	64.29 (9)
		GAN	<u>85</u>	100.00 (85)	26.38	83.53 (71)	32.39 (23)
		DM	87	100.00 (87)	6.63	<u>94.25</u> (82)	<u>56.10</u> (46)
ImageNet (Pizza)	Low	VAE	25	100.00 (25)	12.96	<u>92.00</u> (23)	<u>91.30</u> (21)
		GAN	99	88.00 (87)	172.88	88.51 (77)	46.75 (36)
		DM	73	<u>97.26</u> (71)	83.60	98.59 (70)	92.86 (65)
	High	VAE	25	100.00 (25)	2.60	80.00 (20)	<u>75.00</u> (15)
		GAN	99	100.00 (99)	47.93	86.87 (86)	51.16 (44)
		DM	73	100.00 (73)	12.53	100.00 (73)	86.30 (63)

TABLE III

COMPARISON BETWEEN GENAI TIGS ACROSS DIFFERENT DATASETS AND MUTATION EXTENTS IN TERMS OF VIABLE SEEDS, MISCLASSIFICATION-INDUCING INPUTS, NUMBER OF ITERATIONS TO GENERATE FAILURE, INPUT VALIDITY, AND LABEL PRESERVATION. THE BEST RESULTS ARE HIGHLIGHTED IN BOLD, WHILE THE UNDERLINED VALUES ARE NOT STATISTICALLY DIFFERENT FROM THE BEST.

19

DATASET CIFAR-10 INTB INPI (g) (j) (m)

(n)

Fig. 3. Misclassification-inducing images generated by GenAI TIGs

